- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0002000000000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Cox, Guilherme (2)
-
Bhattacharjee, Abhishek (1)
-
Cox, Alan L. (1)
-
Hairgrove, Mark (1)
-
Joshi, Ketaki (1)
-
Khandelwal, Anurag (1)
-
Pothukuchi, Raghavendra Pradyumna (1)
-
Rixner, Scott (1)
-
Sheinberg, Andrew (1)
-
Vesely, Jan (1)
-
Wu, Michael (1)
-
Zhu, Weixi (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Zhu, Weixi; Cox, Guilherme; Vesely, Jan; Hairgrove, Mark; Cox, Alan L.; Rixner, Scott (, 2022 IEEE International Symposium on Workload Characterization (IISWC))An increasing number of applications benefit from heterogeneous hardware accelerators. Such accelerators often require the application to manually manage memory buffers on devices and transfer data between host and device buffers. A programming model that unifies the virtual address space across the host and devices is appealing because it enables automatic memory transfers and simplifies application-level programming. However, the automatic memory transfers can sometimes be redundant, which decreases performance. NVIDIA’s UVM (unified virtual memory) driver provides a unified virtual address space for CPU-GPU programming. This paper identifies redundant memory transfers (RMTs) as a common performance issue with UVM. To address this issue, this paper proposes a data discard directive, and evaluates two implementations of that directive, UvmDiscard and UvmDiscardLazy. This directive exploits application-level knowledge to avoid RMTs. The implementations were integrated with NVIDIA’s open-source UVM driver to demonstrate their usefulness on real-world CUDA UVM applications. For example, the use of the discard directive increases training throughput by 61.2% on a large deep learning application that oversubscribes GPU memory.more » « less
An official website of the United States government
